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A B S T R A C T

Accurate representation of river channel geometry is important for hydrologic and hydraulic modeling of
fluvial systems. Often, channel geometry is estimated using simple rating curves that can be applied across
various spatial scales. However, such methods are limited to power law relations that do not employ many
potentially relevant catchment and river attributes. This paper introduce a new dataset, IFMHA (Inventory of
Field Measurement of Hydraulic Attributes), to enable research studies on channel geometry and streamflow
characteristics. IFMHA is derived from the National Water Information System (NWIS) site inventory for
surface water field measurements and stream attributes from the National Hydrography Dataset (NHD). IFMHA
includes 2,802,532 records from 10,050 sites (NWIS streamgaging stations). The dataset utility is demonstrated
here by presenting a series of conceptual models for estimating channel geometry parameters (i.e., channel
mean depth, channel maximum depth, wetted perimeter, and roughness) based on the available field attributes
within IFMHA. Such a dataset and attributed channel geometry parameters can enhance the performance
of operational flood forecasting frameworks (e.g. National Water Model) by providing more accurate initial
conditions used in hydrologic and hydraulic routing models.
1. Introduction

Hydrological models are prominent tools for flood forecasting,
water resources management, and the study of climate change im-
pacts (Bárdossy and Singh, 2008; Mendoza et al., 2016; Krysanova
et al., 2018). Hydrological models often require a routing method to
estimate discharge hydrograph through a river channel (Yoo et al.,
2017; Zhao et al., 2017; Nguyen-Quang et al., 2018). The accuracy of
the representation of channel geometry can significantly impact routing
simulations within hydrological models (Orlandini and Rosso, 1998;
Hutton et al., 2012; Brackins et al., 2021). Since obtaining accurate
channel geometry using surveying methods is costly, simplifying as-
sumptions are often used (Brackins et al., 2021). An example of this
approach is the representation of channel geometry in the National
Water Model (NWM) developed by the National Oceanic and Atmo-
spheric Administration (NOAA), National Weather Service. At present,
the NWM is using a compound channel formulation that incorporates
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trapezoidal bankfull and rectangular floodplain cross sections as a
means of simplifying the behavior of the flow (Gochis et al., 2020).

The importance of proper representation of channel geometry and
the lack of surveyed data in most rivers has motivated research in the
field of hydraulic geometry, mostly focusing on power-law equations
that relate channel width, depth, and velocity with drainage area or
discharge (Leopold and Maddock, 1953; Parker et al., 2007; Ferguson,
1986; Dingman, 2007; Stewardson, 2005). In locations where no or
limited discharge data is available, drainage area is often used (Dunne
and Leopold, 1978; Ames et al., 2009). It has been shown that regional
calibration of hydraulic geometry equations provides a more robust
estimation of channel parameters (Bieger et al., 2015, 2016). This,
however, requires much larger and spatially diverse datasets. Attempt-
ing to overcome this challenge, a combined dataset from 50 studies
was used to develop regional calibrations for estimation of bankfull
hydraulic geometry (Blackburn-Lynch et al., 2017), which are currently
vailable online 10 July 2024
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being used in NWM to estimate reach-averaged geometry (Gochis et al.,
2020). Moreover, taking advantage of satellite measurements, the Sur-
face Water and Ocean Topography (SWOT) mission by NASA and CNES,
focuses on providing several river data products such as river width and
water surface elevation (Lettenmaier et al., 2015; Altenau et al., 2021).
However, remote sensing products such as those offered by SWOT, are
not without limitations as they cannot observe below the water surface
and the small rivers are unobserved (Mersel et al., 2013; Nickles et al.,
2020).

In recent years, the development of large datasets has opened
new opportunities in various fields of water resources engineering. An
example of this is the Catchment Attributes and Meteorology for Large-
sample Studies (CAMELS) Dataset (Newman et al., 2015; Kratzert et al.,
2023), allowing for benchmarking various types of hydrological mod-
els and deriving robust conclusions on hydrologic processes (Kratzert
et al., 2019; Lees et al., 2021; Feng et al., 2022). Furthermore, de-
velopment of such datasets has enabled researchers in the field to
understand regional variability in catchment behavior, regional model
performance, analyzing extreme events and model uncertainty (Lane
et al., 2019; Sawicz et al., 2011; Gudmundsson et al., 2019; Westerberg
et al., 2016). While the utility of such datasets has been shown, the
number of publicly available large datasets is still limited (Coxon et al.,
2020), underlining the importance of developing new and improved
datasets. However, care must be taken when using large datasets as
data inconsistencies, sometimes referred to as disinformative data, can
lead to model calibration and inference issues (Beven, 2024; Kauffeldt
et al., 2013; Clerc-Schwarzenbach et al., 2024).

In the context of river and channel geometry, a number of studies
were published focusing on the development of relevant datasets in-
cluding, the National Hydrography Dataset Plus (NHDPlusV2) (McKay
et al., 2012), USGS HYDRoacoustic dataset in support of the Sur-
face Water Oceanographic Topography satellite mission (HYDRoS-
WOT) (Canova et al., 2016; Bjerklie et al., 2020), and satellite-based
datasets, providing opportunities for the development of data-driven
approaches for estimation of river geometry (Allen and Pavelsky,
2015; Lin et al., 2020; Li et al., 2022). One recent application in-
volved developing a new dataset, the hydraulic geometry (HyG), to
better characterize the effect of channel parameters on NWM-simulated
streamflow using a set of regression-based regionalizations (Heldmyer
et al., 2022). The HyG dataset, which is currently unpublished, is
a recent compilation of field discharge measurements gathered from
gauges located throughout the continental United States.

The HYDRoSWOT dataset is a compilation of geometry and hy-
draulic observations from over 220,000 cross-sectional measurements
obtained from 10,081 United States Geological Survey (USGS) stream-
gaging sites. This dataset is constrained to measurements recorded by
Acoustic Doppler Current Profiler. HYDRoSWOT contains a variety of
channel geometry parameters and flow characteristics such as mean
depth, mean velocity, discharge, stage, water-surface width, maximum
depth, and maximum velocity (Canova et al., 2016). However, by
filtering zero, missing, suspicious values, and outliers, the number of
records significantly diminished. For example, Bjerklie et al. (2020) im-
posed restrictions on HYDRoSWOT based on some hydraulic conditions
which resulted in a subset including only 20,625 records, representing
3519 gaging stations. The low number of records in many locations,
combined with the inherent uncertainties and inconsistencies of mea-
surements recorded irregularly over long periods of time, underline the
benefits of developing larger and improved datasets.

In this study, a new channel hydraulic attributes dataset is pre-
sented; the Inventory of Field Measurement of Hydraulic Attributes
(IFMHA). IFMHA is based on the National Water Information Sys-
tem (NWIS) surface water field measurements and attributes from
the National Hydrography Dataset Plus Version 2.1 (NHDPlusV2.1).
It includes 2,802,532 records from 10,050 sites (USGS gaging sta-
tions) collected from the entire field measurements data for each site.
2

Compared to HYDRoSWOT, IFMHA includes a much larger number of
measurements as well as additional channel geometry data, which al-
lows for a more robust analysis. IFMHA includes five important channel
geometry and streamflow characteristics (i.e., flow rate, velocity, stage,
channel width, and cross-section area). Moreover, we present a series
of analyses based on IFMHA in which additional channel parameters
(i.e., channel mean depth, maximum depth, wetted perimeter, and
roughness) are estimated by conceptual models. The high predictability
of these models allows us to not only estimate additional attributes
but also fill gaps in the existing channel geometry attributes, stemming
from missing values in the NWIS field measurements data across the
US.

2. Dataset overview

IFMHA includes 2,802,532 field measurements collected at 10,050
USGS gage sites across the US. The time span of these measurements
is from 05-05-1845 to 10-24-2022 (our most recent data retrieval
date). Notably, IFMHA expands upon the HYDRoSWOT dataset by
incorporating the entire record of field measurements within NWIS
including different types of field measurement methods (see Table 1).
The number of unique gage sites included in IFMHA is 31 sites less than
HYDRoSWOT (17 of these stations are operated by an agency other
than USGS, and the data for the other 14 stations are not available on
the USGS website). IFMHA augmented the NWIS field measurements
by adding relevant attributes reported in the NHDPlus V2.1 dataset.

As mentioned, IFMHA consists of three main sources of data in-
cluding HYDRoSWOT, NWIS field measurements, and NHDPlus V2.1
datasets. The order and process of incorporating each dataset for the
compilation of IFMHA are depicted in Fig. 1. The flowchart outlines the
sequential steps involved in dataset adoption. The following paragraphs
will explain each data sources mentioned in Fig. 1.

2.1. HYDRoSWOT

HYDRoSWOT is an extensive collection of USGS cross-section sur-
veys for supporting Surface Water Oceanographic Topography (SWOT).
The dataset comprises over 200,000 records of USGS Acoustic Doppler
Current Profiler discharge measurements collected from the USGS
streamgaging network. It offers a range of essential fields, including
mean and maximum depth, velocity, discharge, stage, and water-
surface width. Since USGS site numbers are common to both IFMHA
and HYDRoSWOT datasets, constant stream and catchment features
such as station names, geographic coordinates, drainage area, and
steam types were extracted from HYDRoSWOT (see Table 2). For this
purpose, first, the desired features were selected in HYDRoSWOT, then
they were attributed to IFMHA using the USGS streamgage identifier
(site number).

2.2. NWIS field measurements

The USGS conducts periodic field measurements including cross-
section surveys for thousands of gage sites. Several methods are used
by the USGS to conduct streamflow measurements, but the USGS
principally uses mechanical current meters and hydroacoustic me-
ters (Turnipseed and Sauer, 2010). Cross-section surveys at gaging
stations generally include measurement of width, depth, velocity, the
direction of flow, and recording of field notes. These observations are
used to calculate discharge using the ‘velocity-area’ method (i.e., dis-
charge is computed as the product of the area and velocity). The USGS
provides public access to these measurements through the NWIS web
interface under the category of surface water field measurement for
each USGS site.

For the compilation of IFMHA, field measurements were queried
in a tab-separated format for each NWIS station and then parsed and
converted into a unified data frame comprised of records for all sites.

For this purpose, URL links for each USGS site station were first created
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Fig. 1. Flowchart illustrates the incorporation of three key data sources, namely HYDRoSWOT, NWIS field measurements, and NHDPlus V2.1 datasets, for the compilation of
IFMHA. The desired variables from each data source were linked to IFMHA using the USGS site number and common identifiers (COMID).
Table 1
The different types of USGS streamflow field measurement methods used in IFMHA.
Method Description Frequency Percent

UNSPE Unspecified 1 204 516 43.19%
QSCMM Discharge, measured, midsection method 792 169 28.40%
QADCP Discharge, measured, ADCP from moving boat 437 418 15.68%
OTHER 347 104 12.45%
QFLUM Discharge, measured, flume 3888 0.14%
QIDIR Discharge, measured, indirect method 2959 0.11%
QVOLM Discharge, measured, volumetric 900 0.03%
NONE 4 0.00%
ACOUS Acoustic doppler current profile 2 0.00%
ESTIM Estimated 1 0.00%
Table 2
The HYDRoSWOT column names and definitions.

Field code Description

site_no Site number
station_nm Station name
dec_lat_va Decimal latitude (degrees)
dec_long_va Decimal longitude (degrees)
drain_area_va Drainage area (square mile)
contrib_drain_area_va Contributing drainage area (square mile)
site_tp_cd Site type code

using the list of site numbers in the HYDRoSWOT dataset. Then, field
measurements for each site station were queried from the NWIS Web
Interface using the URL links. Finally, the requested text file of each site
was parsed into a unified data frame. The field codes and definitions
of attributes provided in the NWIS web interface are shown in Table 3.
The Python script for retrieving a list of active streamgages and their
associated field measurements from the NWIS web service, as well as
parsing the raw files into a unified data frame, can be found on the
public IFMHA GitHub page.

2.3. NHDPlus V2.1 National Seamless Geodatabase

National Hydrography Dataset Plus (NHDPlus) is a national geospa-
tial surface water framework including the features and capabilities
of the National Hydrography Dataset (NHD), the National Elevation
Dataset (NED), and the Watershed Boundary Dataset (WBD). NHDPlus
integrates the vector NHD stream network and WBD hydrologic unit
boundaries with the NED gridded land surface. In this study, the
desired field attributes were extracted from the gage location (GageLoc)
and NHD flow line network (NHDFlowline) geospatial databases and
attributed to IFMHA using the USGS site number and the common
identifiers (COMID) of the NHD stream features (see Table 4). NHD-
Flowline represents different types of streamflows (i.e., stream/river,
3

canal/ditch, pipeline, artificial path, coastline, and connector) which
are included in the NHDPlus surface water network, and GageLoc
contains the locations of stream flow gages on the NHDFlowline fea-
tures. For those USGS sites where there was no correspondence in the
GageLoc geospatial database, NHDPlus reach attributes were assigned
to the nearest site within a 300 meters buffer (McKay et al., 2012) using
the Nearest Neighbor Analysis tool in QGIS.

3. Methodology

In addition to the aforementioned field attributes, IFMHA pro-
vides estimates for four channel geometry parameters (i.e., channel
mean depth, maximum depth, wetted perimeter, and roughness) using
conceptual models. The models adopted to estimate these channel
parameters are explained in this section. The proposed models are
evaluated using the mean and maximum depth values measured from
observations of HYDRoSWOT. For this purpose, records with missing
and zero values for the desired field attributes (i.e., site type, discharge,
channel cross-section area, width, mean depth, and max depth) were
excluded. Then, sites that include negative discharge observations are
omitted as they, most likely, represent control sections and tidal areas.
Finally, only sites categorized as channels or streams are selected,
excluding other types such as canals, estuaries, and coastal. After these
filtrations, the subset of HYDRoSWOT used in the following analyses
includes 47,522 records within 5914 sites (see Table 5).

A similar filtering procedure was adopted for the IFMHA dataset.
First, missing and zero values for the desired field attributes including
site type, discharge, channel cross-section area, width, and slope were
removed. Similar to the HYDRoSWOT subset, sites that include negative
discharge observations or are categorized as site types other than
natural streams were excluded. For meaningful statistical analysis, only
sites with over 50 observations were selected. Eventually, 2,064,782
observations (represented by 6498 sites) remained for the analyses.
The geographical distribution of sites and the corresponding number

of records are shown in Fig. 2.
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Table 3
The NWIS web interface tab-separated field column names and definitions.
Field code Description

agency_cd Agency code
site_no Site number
measurement_nu Measurement number
measurement_dt Date of measurement (MM-DD-YYYY)
tz_cd Time zone offset, an ANSI SQL/92 time zone offset string
q_meas_used_fg Flag indicates if the discharge measurement is marked used
party_nm An indication of who made the measurement
site_visit_coll_agency_cd What agency made the measurement at the site visit
discharge_va The computed discharge (cfs)
gage_height_va Gage height as shown on the inside staff gage at the site (ft)
gage_va_change The amount the gage height changed during the measurement (ft)
gage_va_time The amount of time elapsed during the measurement (decimal hours)
measured_rating_diff Measurement rating codes, the relative quality of the measurement
control_type_cd Condition of the rating control at the time of the measurement
discharge_cd The adjustment code for the measured discharge
chan_nu The channel number
chan_name The channel name
meas_type The channel measurement type
streamflow_method The channel discharge measurement method
velocity_method The channel velocity measurement method
chan_discharge The channel discharge (cfs)
chan_width The channel width (ft)
chan_velocity The mean velocity (ft/s)
chan_area The channel area (ft2)
chan_stability The stability of the channel material
chan_material The channel material
chan_evenness The channel evenness from bank to bank
long_vel_desc The longitudinal velocity description
horz_vel_desc The horizontal velocity description
vert_vel_desc The vertical velocity description
chan_loc_cd The channel location code
chan_loc_dist The channel location distance
Table 4
The NHDPlus V2 column names, definitions, and sources.
Field code Description Source

Source_Fea Gage ID/USGS NWIS Site Number GageLoc
FLComID ComID of the NHDFlowline feature on which the gage is located GageLoc
State_CD State Code GageLoc
State State Abbreviation GageLoc
DASqMi NWIS Drainage Area (in square miles) GageLoc
DASqKm NWIS Drainage Area (in square kilometers) GageLoc
LatSite NWIS Latitude GageLoc
LonSite NWIS Longitude GageLoc
ComID Common identifier of the NHD feature NHDFlowline
Ftype NHD Feature Type NHDFlowline
StreamOrde Modified Strahler Stream Order NHDFlowline
Slope Slope of flowline (meters/meters) based on smoothed elevations NHDFlowline
Table 5
The statistics for discharge and channel geometry parameters of HYDRoSWOT subset.
Statistics Discharge (m3/s) Area (m2) Width (m) Mean depth (m) Max depth (m)

Count 47,522 47,522 47,522 47,522 47,522
Mean 311.50 318.76 72.91 2.04 3.00
STD 1671.69 1354.10 121.31 2.22 3.28
Min 0.0015 0.10 0.78 0.16 0.21
25% 6.77 18.12 21.10 0.82 1.25
50% 22.66 49.19 37.38 1.36 2.07
75% 88.58 147.31 74.43 2.39 3.48
Max 63,925.25 33,166.39 4987.12 36.20 62.69
i
i

H
w
T
s

3.1. Mean depth

In order to estimate the mean depth, the ‘‘Mean Value Theorem for
Integrals’’ is applied. This theorem states that the average value of a
continuous function 𝑓 (𝑥) over a closed interval [𝑎, 𝑏] is equal to the
verage value of 𝑓 (𝑥) over [𝑎, 𝑏].

(𝑐) = 1 𝑏
𝑓 (𝑥) 𝑑𝑥 (1)
4

(𝑏 − 𝑎) ∫𝑎 f
where, 𝑓 (𝑐) is the average value of the function 𝑓 (𝑥), and 𝑐 is a point
n an interval [𝑎, 𝑏]. The schematic for the calculation of mean depth is
llustrated in Fig. 3.

The performance of the proposed model was assessed using the
YDRoSWOT subset. Firstly, for each record, the mean depth value
as estimated using the corresponding width and cross-section area.
he results were then compared against the actual mean depth mea-
urements. Eventually, the model was used to calculate the mean depth

or IFMHA records. To do this, the values of the channel cross-section
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Fig. 2. Map of the distribution of streamgages across the continental United States.
Fig. 3. Using ‘‘Mean Value Theorem for Integrals’’ to estimate mean depth, (a) is a mathematical illustration of the theorem, and (b) is equivalent parameters in channel cross-section
geometry.
area were divided by their corresponding channel width. The results of
mean depth are reported and discussed in Section 4.1.

3.2. Maximum depth (Thalweg)

From HYDRoSWOT, Bjerklie et al. (2020) found that among several
cross-sectional hydraulic ratios, the ratio of maximum to mean depth
offers the smallest coefficient of variation, indicating these measures
are the most stable across the various flows and rivers. Bjerklie et al.
(2020) adopted the line of organic correlation (LOC) regression to fit
the best line. According to Kermack and Haldane (1950), LOC for the
predicted values of the variable 𝑌 can be expressed as

𝑦 = 𝛼𝑥 + 𝛽 (2)

where, 𝛼, and 𝛽 are defined as

𝛼 =
𝜎𝑌
𝜎𝑋

(3a)

𝛽 = 𝜇𝑌 −
𝜎𝑌
𝜎𝑋

𝜇𝑋 (3b)
5

The HYDRoSWOT subset was used to calibrate the slope, 𝛼, and y-
intercept, 𝛽 of Eq. (2) and evaluate the performance of LOC regression
in estimating the max depth using mean depth.

3.3. Cross-section

For each site station, two different conceptual cross-section shapes
(trapezoid, and parabola) were used to estimate channel geometry
(Fig. 4).

The trapezoidal cross-section was chosen because, by adjusting the
side slope and bottom width, it could also depict rectangular and trian-
gular cross-sections. This means that while estimating the parameters
of one type of cross-section, it could automatically transform into two
other distinct cross-sectional shapes. For estimating the side slope (𝑚),
and bottom width (𝐵𝑤), a half-channel conceptualization was adopted
(see Fig. 4(a)). For a given site station, the field measurements of chan-
nel width and corresponding depth were used to fit a linear regression.
The coefficient of this fit is the channel side slope, and the intercept
can be considered half of the channel’s bottom width. In order to
avoid negative values for the channel side slope, a Non-Negative Linear
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Fig. 4. Estimating parameters related to channel cross-section. A half-channel conceptualization of (a) a trapezoidal cross-section for estimating side slope (𝑚) and bottom width
(𝐵𝑤), (b) a parabolic cross-section for estimating parabolic coefficient (𝑎).
Regression (NNLR) method was used. As the estimation of the mean
depth involved assuming an equivalent rectangular cross-section, the
estimated maximum depth was incorporated in the following manner
for the fitting process:

𝑇 ∕2 = 𝑚 × 𝑑𝑚𝑎𝑥 + 𝐵𝑤∕2 (4)

here, 𝑇 , and 𝑑𝑚𝑎𝑥 are top width and maximum depth as well as 𝑚,
nd 𝐵𝑤 are estimated side slope and bottom width, respectively.

The parabolic cross-section was selected based on the ratio of
aximum-to-mean depth, which is investigated in Section 4.2. For a

iven site station, the field measurements of channel width and corre-
ponding depth were used to fit a linear regression (with no intercept).
hus, the coefficient of this fit is the coefficient of the parabola defined
y the equation 𝑦 = 𝑎𝑥2 (Fig. 4(b)).

𝑚𝑎𝑥 = 𝑎 × (𝑇 ∕2)2 (5)

here, 𝑇 , 𝑑𝑚𝑎𝑥, and 𝑎 are top width, maximum depth, and parabolic
oefficient, respectively.

.4. Bankfull characteristics

In the estimation of bankfull characteristics, Heldmyer et al. (2022)
roposes using the 99th percentile discharge for determining bankfull
arameters. However, as per the definition provided by Parker (2006),
or rivers with floodplains, bankfull is identified at the point of inflec-
ion in the curve fitting the river discharge versus stage (Fig. 5). This
oncept is rooted in the understanding that stage typically rises with
ncreasing discharge while flow remains confined within the channel;
owever, this relationship shifts (decreasing) once the stream flow
urpasses the bankfull state. Therefore, the inflection in the curve – a
udden change in slope of the fitting line – marks the stage at which
low exceeds bankfull conditions. While this study does not focus on the
stimation of bankfull characteristics, the comprehensive data coverage
rovided by IFMHA allowed for testing and comparison of the two
entioned approaches across randomly selected site stations from the

FMHA dataset which is discussed in Section 4.4.

.5. Roughness (Manning’s n) coefficient

The determination of flow in an open channel requires an evaluation
f the channel’s resistance to flow, which is typically quantified by a
oughness parameter, such as Manning’s 𝑛 coefficient. However, the
haracteristics of natural and constructed channels and the factors
nfluencing channel roughness can exhibit considerable variability. In
rid to semi-arid environments, Manning’s equation parameters can-
ot be determined with sufficient accuracy by direct measurement of
6

Fig. 5. In the case of rivers with floodplains, the stage tends to increase rapidly with
increasing discharge when all the flow is confined to the channel, but much less rapidly
when the flow spills significantly onto the floodplain. The rollover in the curve defines
bankfull discharge (𝑄𝑏𝑓 ) (Parker, 2006).

roughness characteristics, such as vegetation and variations in channel
geometry. This is due to the dynamic nature of vegetation occupy-
ing the channel bed, banks, and overflow areas in intermittent and
ephemeral streams, which can undergo significant changes over time or
during flood events (Phillips and Tadayon, 2006). Field measurements
of streamflow and the physical features of the channel can be used to
back-calculate Manning’s 𝑛, allowing for the development of empirical
or physics-based models to estimate it indirectly.

The estimated channel geometry parameters (side slope and bottom
width) were used to calculate the hydraulic radius, and then, using
Manning’s equation the roughness was calculated as follows,

𝑛 = 𝐴 × 𝑅2∕3 × 𝑆1∕2

𝑄
(6a)

𝑅 = 𝐴
𝑃

(6b)

𝑃 = 𝐵𝑤 + 2 × 𝑑𝑚𝑎𝑥 ×
√

𝑚2 + 1 (6c)

where, 𝐴, 𝑃 , 𝑅, 𝑆, and 𝑄 represent cross-section area (m2), wetted
perimeter (m), hydraulic radius (m), channel gradient (m∕m), and
discharge (m3∕s), respectively.

In this study, the guidelines for the selection of roughness coef-
ficients for natural and constructed channels were used to estimate
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Table 6
The performance metrics of the proposed models for estimating Mean and Max depth
of HYDRoSWOT subset.

Channel parameter Number of data Metrics

NSE r RMSE (m) PBIAS

Mean depth 47,046 0.99 +0.99 0.17 −3.46
Max depth 47,046 0.94 +0.97 0.78 0.00

a maximum threshold for the roughness coefficients (Jarrett, 1985;
Phillips and Tadayon, 2006). According to Cowan (1956), the selected
base value of roughness 𝑛0, can be adjusted by adding adjustment
actors 𝑛1,… , 𝑛𝑝, and multiplying the meandering adjustment factor (m)
s follows:

= (𝑛0 + 𝑛1 + 𝑛2 +⋯ + 𝑛𝑝) × 𝑚 (7)

This threshold was estimated for the most extreme conditions,
.e., the highest base 𝑛0 value, and the highest adjustment factors for
hannel irregularity, variation in channel cross-section, obstructions,
egetation, and degree of meandering.

. Results and discussion

The evaluation of the models is performed by comparing the esti-
ated values with the measurements within a 99% confidence interval

i.e., data points falling outside the 0.5% lower and upper limits are
onsidered outliers). This approach aims to mitigate the influence of
utliers and measurement errors on the assessment of the models.

.1. Mean depth

The performance metrics of the estimated mean depth are reported
n Table 6. The results indicate a strong agreement between the esti-
ated mean depth and ground truth data, with an NSE and r score

f 0.99. These exceptional results indicate that further exploration of
lternative models is unnecessary.

Fig. 6a visually compares the data distribution of ground truth
GT; HYDRoSWOT) with estimated (MODEL) mean depth using a box
whisker) plot. It shows that the model performs extremely well and
an accurately capture the full range of values, including peaks. Fig. 6b
hows the scatter plot that visually presents whether the model over-
stimates or underestimates the ground truth mean depths. It shows
hat almost all data points lie on the identity (1:1) line showing the
greement of estimated and measured values.

The mean depth value is missed for a significant part of the Hy-
roSWOT dataset (about 75%). According to the performance metrics
f the results, a good estimation of the mean depth could be made for
he missing values using this approach.

.2. Maximum depth

The validation performance of the LOC model using HydroSWOT
s reported in Table 6. This model well performed on estimating max-
mum depth, with 0.94, and 0.97 for NSE and r scores, respectively.
ig. 7 shows the performance of the LOC model with ground truth data
n the HYDRoSWOT subset. Fig. 7a shows model was able to cover a
ide range of the upper bound values and outliers of data. This suggests

hat the model possesses the ability to estimate extreme values. Fig. 7b
resents a scatter plot that visualizes the distribution of overestimated
nd underestimated values for the model. It is observed that the number
f overestimated and underestimated values is roughly equal for the
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odel.
.3. Cross-section

As explained in Section 3.3, using a half-channel conceptualization a
on-Negative Linear Regression (NNLR) model was fit to estimate the

ide slope and bottom width. The obtained coefficient and intercept
re representatives of the channel side slope and bottom width, respec-
ively. For the side slope, since an NNLR model was used, no minimum
hreshold was necessary, but a maximum threshold of 12 (m/m) was
et based on the maximum side slope used in NWM compound channel
ormulation (Gochis et al., 2020). In the case of channel bottom width,
egative values were omitted. In total, the calculated parameters were
ithin the chosen thresholds for 6169 sites (94.9% of all sites).

The fitted parameters of the LOC regression, including the slope (𝛼)
nd intercept (𝛽), are 1.48 and −0.01, respectively. By ignoring the
ntercept, the ratio of maximum-to-mean depth is close to the value
f 1.50, implying that the cross sections tend toward a shape with
maximum-to-mean depth ratio consistent with a parabola (Bjerklie

t al., 2020). As mentioned before, according to the ‘Mean Value Theo-
em for Integrals’, the mean depth is computed by dividing the area of
he cross-section by the top width. Thus, for a parabolic cross-section,
t is as follows:

𝐴 = 2
3
× 𝑇 × 𝑑𝑚𝑎𝑥 (8a)

𝑚𝑒𝑎𝑛 =
𝐴
𝑇

= 2
3
× 𝑑𝑚𝑎𝑥 (8b)

where 𝐴 is the area enclosed by the arc of the parabola (defined by the
equation 𝑦 = 𝑎𝑥2), equal to two-thirds of the maximum depth (𝑑𝑚𝑎𝑥)
multiplied by the top width (𝑇 ); and 𝑑𝑚𝑒𝑎𝑛 represents the mean depth
or the given parabola.

Fig. 8 compares the wetted perimeter estimated by trapezoidal and
arabolic cross-sections for 12 randomly selected sites. The trapezoidal
ross-section is a function of maximum depth, while the parabolic cross-
ection is estimated based on top width. In the cases of 05428500,
1591400, 10068500, 06486000, and 02481880, the results deviate
rom the diagonal line, indicating differences in estimating the wetted
erimeter between these two approaches. In these instances, the values
orm a vertical line on the plot. This shape implies that the wetted
erimeter is dominated by the bottom width of the trapezoidal cross-
ection, suggesting that these sites have wide channels where the
ottom width has a more significant impact on the wetted perimeter
ompared to the side slopes. For cases 03415000 and 02298123, the
etted perimeter estimated by both cross-sections aligns more with

he diagonal line. This suggests that the side slope in this trapezoidal
ross-sections plays a more important role in determining the wetted
erimeters.

.4. Bankfull characteristics

According to Fig. 9, except for certain cases requiring special in-
estigation (such as 05278930, 11482500, and 06307740), the 99th
ercentile discharge is significantly higher than the inflection point. For
ome locations (06670500, 01095505, 01166500, and 06610732), the
edian (50th percentile discharge) might better represent the inflection
oint on the hypothetical fitted line, while for others, it could still
esult in overestimation (13215000) or underestimation (05453100).
his analysis implies that identifying bankfull characteristics given
iver discharge is not a straightforward task, as it depends on the
onlinear relationship between river discharge and stage. Additionally,
his relationship is influenced by other factors such as the heterogeneity
f watersheds, the stochastic nature of turbulent flow, and the charac-
eristics of erosion processes, which contribute to the non-deterministic
ature of estimating bankfull characteristics based on discharge. Given
hat the relationship between observed inputs and system response
s stochastic, the modeling approach should also be stochastic (Sho-
aeezadeh et al., 2018). To employ a reliable probabilistic approach,
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Fig. 6. Visual comparison of the measured (GT; HYDRoSWOT) with the estimated (MODEL) mean depth. (a) Visually compares the data distribution (the outliers showed by black
circles represent peak values), and (b) shows the scatter plot.
Fig. 7. The performance of LOC model on the HYDRoSWOT subset. (a) Visually compares the data distribution (the outliers showed by black circles represent peak values), and
(b) shows the scatter plot.
it is essential to have a sufficient number of samples for statistical
significance. By providing statistically significant data for each site,
the IFMHA dataset enables stochastic approaches to estimate channel
geometry parameters given flow discharge.

4.5. Roughness (Manning’s n) coefficient

Various values of Manning’s n may be assigned to a particular reach
based on different flow conditions. However, the value assigned should
reflect the combined impact of the factors that impede the flow (Phillips
and Tadayon, 2006). Therefore, to allocate a specific roughness coeffi-
cient for each site, a process was undertaken in which the streamflow
records within the 99% confidence intervals were identified (i.e., data
points falling outside the 1% upper limit are considered outliers), and
subsequently, the median of the calculated roughness coefficients was
selected as the representative coefficient for that location.
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Fig. 10 compares Manning’s roughness coefficients estimated for
the two different channel geometries (trapezoidal and parabolic). Man-
ning’s roughness coefficient was calculated based on the two different
estimations of wetted perimeters for each of the 6169 sites in the previ-
ous section. Among these sites, 64 had roughness coefficients calculated
using Manning’s equation that exceeded the maximum Manning’s 𝑛
threshold (<0.4745) estimated by Eq. (7). Therefore, these 64 sites were
excluded from the plots presented in Fig. 10.

Fig. 10a indicates that the values of Manning’s roughness coefficient
on the scatter plot align closely with the identity line (R2 = 0.98). In
this figure, the parabolic cross-section yields slightly higher values for
Manning’s roughness coefficient, as it generates lower wetted perimeter
values compared to the trapezoidal cross-section, which maintains a
constant bottom width. This result implies that although Manning’s
roughness coefficient depends on several factors related to the char-
acteristics of the channel, including channel geometry, the effect of the

channel cross-section should be considered relatively trivial. According



Environmental Modelling and Software 180 (2024) 106136S.M.H. Erfani et al.
Fig. 8. The range of wetted perimeter values estimated by trapezoidal versus parabolic cross-sections for 12 USGS site stations. The USGS site number and the number of
observations are reported as a title for each figure.
Fig. 9. The trend of increasing water stage with increasing discharge and the location of the 50th and 99th percentile discharge for twelve randomly selected USGS site stations
from the IFMHA dataset.
to Fig. 10b, the distribution and other statistics of calculated values for
Manning’s roughness coefficients are similar for the two different chan-
nel geometries. This emphasizes that channel geometry does not have
a significant impact on the values of Manning’s roughness coefficient.

Moreover, while the results of this study show the shape of the
channel cross-section may not significantly impact Manning’s rough-
ness coefficient, it remains a crucial parameter for accurately routing
flow and estimating flood inundation areas.
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5. Summary and conclusion

An accurate representation of channel geometry is vital for ef-
fectively routing flow and estimating flood inundation in hydrologic
and hydrodynamic models. However, current approaches relying on
rating curve methods or remote sensing measurements have limitations
that compromise precision. Furthermore, regional calibration of hy-
draulic geometry equations necessitates extensive and diverse datasets,
while the existing datasets are constrained by limited records and
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Fig. 10. Manning’s roughness coefficients estimated by two different channel geometries: (a) scatter plot, (b) violin plot of the obtained results for 6169 sites.
missing values. To enhance the accuracy of flow routing, flood fore-
casting, and water resources management, it is imperative to integrate
different available data sources for developing and enhancing hydro-
logical models and comprehensive frameworks. Additionally, robust
data-driven models should be further researched and developed to
effectively harness large datasets, thereby improving the estimation of
channel geometry and other hydrological processes.

This paper aims to advance data-driven discovery and modeling
of fluvial dynamics by introducing IFMHA, a large-scale dataset for
channel geometry and stream flow characteristics. It is built upon the
HYDRoSWOT dataset and includes 2,802,532 records from 10,050 sites
(NWIS gage stations) collected from NWIS site inventory for surface
water field measurements and stream attributes of NHDPlusV2 dataset.
After filtering out records with missing and zero values from both the
HydroSWOT and IFMHA datasets, IFMHA retains 8431 records (with an
average of 248 records per site), while HydroSWOT has 5914 records
(with an average of 8 records per site), restoring access to 42% of
the USGS site stations that were excluded in the HydroSWOT dataset
during the filtering process. In IFMHA, even after excluding site stations
with fewer than 50 observations, 6498 sites remained (with an average
of 317 records per site), whereas this number diminishes to just 26
sites (with an average of 87 records per site) in HydroSWOT. The
IFMHA dataset is invaluable for estimating river geometry across the
Contiguous United States using stochastic approaches and ensuring a
sufficient number of samples for achieving statistical significance.

Furthermore, a series of analyses for several channel geometry
parameters (including channel mean depth, maximum depth, wetted
perimeter, and roughness) was conducted using conceptual models
to demonstrate the potential of utilizing large datasets. Results were
compared with the channel parameters measured and reported in HY-
DRoSWOT dataset. In general, IFMHA provides hydraulic geometry
data for 10,050 streamgaging stations across the US. Hydraulic geom-
etry data can be used to explain the dynamics of river cross-section
characteristics, which directly effect flood routing and flood inundation
mapping. In addition, IFMHA encompasses a broad range of field
attributes, such as channel material, channel type, and contributing
drainage area. Due to its extensive coverage of hydraulic and hydro-
logic attributes, IFMHA offers opportunities for estimating a myriad
of fluvial attributes, which could provide novel insights for the water
resources community.
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